On this pageTurunan/Differensial📉Sifat Turunan#sifat-sifatf(x)=c→f′(x)=0f(x) = c \to f'(x) =0f(x)=c→f′(x)=0Contohf(x)=2→f′(x)=0f(x) = 2 \to f'(x)= 0f(x)=2→f′(x)=0f(x)=100→f′(x)=0f(x) = 100 \to f'(x)= 0f(x)=100→f′(x)=0sifat-sifatf(x)=cx→f′(x)=cf(x) = cx \to f'(x)=cf(x)=cx→f′(x)=cContohf(x)=2x→f′(x)=2f(x) = 2x \to f'(x) = 2f(x)=2x→f′(x)=2f(x)=55x→f′(x)=55f(x) = 55x \to f'(x) = 55f(x)=55x→f′(x)=55sifat-sifatf(x)=xn→f′(x)=nxn−1f(x)=x^n \to f'(x)=nx^{n-1}f(x)=xn→f′(x)=nxn−1 contohf(x)=x4→f′(x)=4x3f(x)=x^4 \to f'(x)=4x^3f(x)=x4→f′(x)=4x3 f(x)=x7→f′(x)=7x6f(x)=x^7 \to f'(x)=7x^6f(x)=x7→f′(x)=7x6 sifat-sifatf(x)=cxn→cnxn−1f(x) = cx^n \to cnx^{n-1}f(x)=cxn→cnxn−1contohf(x)=2x4→f′(x)=8x3f(x)=2x^4 \to f'(x)=8x^3f(x)=2x4→f′(x)=8x3f(x)=100x2→f′(x)=200xf(x)=100x^2 \to f'(x)=200xf(x)=100x2→f′(x)=200xsifat-sifatf(x)=cu(x)→f′(x)=cu′(x)f(x)=cu(x) \to f'(x)=cu'(x)f(x)=cu(x)→f′(x)=cu′(x)contohf(x)=4lnx→f′(x)=41xf(x)=4 ln x \to f'(x)=4{1 \over x}f(x)=4lnx→f′(x)=4x1f(x)=3cosx→f′(x)=3sinxf(x)=3 cos x \to f'(x)=3 sin xf(x)=3cosx→f′(x)=3sinxf(x)=2cosx→f′(x)=−2sinxf(x)=2 cos x \to f'(x)=-2 sin xf(x)=2cosx→f′(x)=−2sinxsifat-sifatf(x)=u(x)±v(x)→f′(x)=u′(x)±v′(x)f(x)=u(x) \pm v(x) \to f'(x)=u'(x) \pm v'(x)f(x)=u(x)±v(x)→f′(x)=u′(x)±v′(x)contohf(x)=2x+x2→f′(x)=2+2xf(x)=2x+x^2 \to f'(x)= 2 + 2xf(x)=2x+x2→f′(x)=2+2xf(x)=x4+x3→f′(x)=4x3+3x2f(x)=x^4+x^3 \to f'(x)= 4x^3 + 3x^2f(x)=x4+x3→f′(x)=4x3+3x2f(x)=sinx+cosx→f′(x)=cosx−sinxf(x)=sinx+cosx \to f'(x)= cosx - sinxf(x)=sinx+cosx→f′(x)=cosx−sinxsifat-sifatf(x)=u(x)v(x)→f′(x)=u′(x)v(x)+u(x)v′(x)f(x)=u(x)v(x) \to f'(x)=u'(x)v(x)+u(x)v'(x)f(x)=u(x)v(x)→f′(x)=u′(x)v(x)+u(x)v′(x) contohsifat-sifatf(x)=u(x)v(x)→f′(x)=u′(x)v(x)−u(x)v′(x)(v(x))2f(x) = {u(x) \over v(x)} \to f'(x)={u'(x)v(x)-u(x)v'(x) \over (v(x))^2}f(x)=v(x)u(x)→f′(x)=(v(x))2u′(x)v(x)−u(x)v′(x)contohsifat-sifatf(x)=u(x)n→f′(x)=n(u(x))n−1u′(x)f(x)= u(x)^n \to f'(x) = n(u(x))^{n-1}u'(x)f(x)=u(x)n→f′(x)=n(u(x))n−1u′(x)contohSifat Turunan trigonometri#sifat-sifat